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ABSTRACT. The purpose of this paper is to introduce two new classes of
rings that are closely related to the classes of Dedekind domains and Krull
domains. Let H = {R | R is a commutative ring with 13 0 and N i(R) is
a divided prime ideal of R}. Let R € M, T(R) be the total quotient ring of
R, and set ¢ : T(R) — Ryyp) such that ¢{a/b) = a/b for every a € R
and b € R\Z(R). Then ¢ is a ring homomorphism from T(R) into Ry;icp),
and ¢ restricted to R is also a ring homomorphism from R into R Nil(R)
given by ¢(z) = z/1 for every z € R. A nonnil ideal I of R is said to be
¢-invertible if #(I) is an invertible ideal of $(R). If every nonnil ideal of R
is ¢-invertible, then we say that R is a ¢-Dedekind ring. Also, we say that
R is a ¢-Krull ring if ¢(R) = NV;, where each V; is a discrete ¢-chained
overring of @(R), and for every nonnilpotent element z € R, $(z) is a unit
in all but finitely many V;. We show that the theorjes of ¢-Dedekind and
¢-Krull rings resemble those of Dedekind and Krull domains.

1. INTRODUCTION

Let R be a commutative ring with 1# 0 and Nil (R) its set of nilpotent
elements. Recall from [11] and [9] that a prime ideal of R is called a divided
prime if P C () for every z € R\ P; thus a divided prime ideal is comparable
to every ideal of R. In [2], [3], [4], [5], [6], and [7], the second-named author
investigated the class of rings M = {R | R is a commutative ring and Nil{R)
is a divided prime ideal of R}. (Observe that if R is an integral domain, then
R € H.) Recently, the authors [1] generalized the concept of Priifer and Bezout
domains to the context of rings that are in the class H. Also, Lucas and the
second-named author [8] generalized the concept of Mori domain to the context of
rings that are in the class H. In this paper, we give a generalization of Dedekind
domains and Krull domains to the context of rings that are in the class H.
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We assume throughout that all rings are commutative with 15 0. Let R be
a ring. Then T(R) denotes the total quotient ring of R, and Z (R) denotes
the set of zerodivisors of R. We start by recalling some background material. A
non-zerodivisor of a ring R is called a reqular element and an ideal of R is said
to be regular if it contains a regular element. An ideal I of aring R is said to
be a nonnil ideal if I ¢ Nil(R). If I is a nonnil ideal of a ring R € H, then
Nil(R) C I. In particular, this holds if I is a regular ideal of a ring R € H.

Recall from [2] that for a ring R € H with total quotient ring T{(R), the map
¢ : T(R) — Ryury suchthat ¢(a/b) =a/b for a € R and be R\ Z(R) is
a ring homomorphism from T(R) into Ry (r), and ¢ restricted to R is also a
ring homomorphism from R into Ryy(r) given by ¢(z) = z/1 forevery z € R.
Observe that if R € H, then ¢(R) € H, Ker(¢) C Nil(R), Nil(T(R)) = Nil(R),
Nil(Ryuy) = ¢(Nil(R)) = Nil(p(R)) = Z($(R)), T($(R)) = Byar) 1
quasilocal with maximal ideal Nil(¢(R)), and Ryir)/N il(p(R)) =
T(¢(R))/Nil(¢(R)) is the quotient field of ¢(R)/N il(¢(R)).

Recall from [4] that a ring R € H is called a ¢-chained ring if z=! € ¢(R)
for every z € Ryiyr) \ #(R); equivalently, if for every a,b € R\ Nil(R), either
albor b|ain R (ie., R/Nil(R) is a valuation domain). Let V' be an overring
of ¢(R) (ie., ¢(R) CV C T(¢(R))). Then observe that Nil(V) = Nil(¢(R))
and T(V) = T(¢(R)) = Rnu(r), and hence V is a ¢-chained overring of ¢(R)
if and only if z=' € V for every z € Ryy \ V. Clearly a chained ring is
also a ¢-chained ring. Tt was shown in [4] that for each integer n 2> 1, there is
a ¢-chained ring with Krull dimension n which is not a chained ring. We say
that a ring R € H is a discrete ¢-chained ring if R is a ¢-chained ring with
at most one nonnil prime ideal and every nonnil ideal of R is principal. Also,
recall from [6] that a ring R € H is called a nonnil-Noetherian ring if every
nonnil ideal of R is finitely generated. Tt was shown in [6] that a ring R € H
is a nonnil-Noetherian ring iff R/Nil(R) is a Noetherian domain. Recall that
anideal I of aring R is called a divisorial ideal of R if (I7')~' =1, where
IV ={z eT(R)|zI C R} Ifaring R satisfies the ascending chain condition
(a.c.c.) on divisorial regular ideals of R, then R is called a Mori ring in the
sense of [16]. A ring R € H is called a ¢-Mori ring in the sense of [8] if ¢(R) is
a Mori ring. It was shown in [8] that aring R € H is a ¢-Mori ring iff R/Nil(R)
is a Mori domain.

An integral domain R is called a Dedekind domain if every nongzero ideal of
R is invertible, i.e., if I is a nonzero ideal of R, then I[ ~1 = R. Also, recall
from [12] that an integral domain R is called a Krull domain if R = nNV;, where
each V, is a discrete valuation overring of R, and every nonzero element of E
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is a unit in all but finitely many V;. Many characterizations and properties of
Dedekind and Krull domains are given in [12], [13], and [15]. Let R € H. We
say that a nonnil ideal I of R is ¢-invertible if ¢(I) is an invertible ideal of
¢(R). Recall from [1] that R is called a ¢-Prifer ring if every finitely generated
nonnil ideal of R is ¢-invertible. If every nonnil ideal of R is ¢-invertible, then
we say that R is a ¢-Dedekind ring. Also, we say that R is a d-Krull ring
if ¢(R) = NV;, where each V; is a discrete ¢-chained overring of ¢{R), and
for every nonnilpotent element z € R, ¢(x) is a unit in all but finitely many
Vi. We say that a ring R € H is ¢-(completely) integrally closed if P(R) is
(completely) integrally closed in T(¢(R)) = Ryir)- Among many results in this
paper, we show (Theorems 2.10 and 2.15) that aring R € H is a ¢-Dedekind
ring iff R is a ¢-integrally closed nonnil-Noetherian ring of dimension <1,iff R
is a nonnil-Noetherian ring and Rj; is a discrete ¢-chained ring for each maximal
ideal M of R, iff every nonnil ideal of R is a product of (nonnil) prime ideals of
R. Also, we show (Theorem 3.4) that a ring R € H is a ¢-Krull ring iff R isa
¢-completely integrally closed ¢-Mori ring. We also use idealization-constructions
as in [14, Chapter VI, page 161] to construct examples of ¢-Dedekind and ¢-Krull
rings which are not integral domains.

2. ON ¢-DEDEKIND RINGS

We start this section with the following proposition.

Proposition 2.1. Let R € H. Then R is a ¢-Dedekind ring if and only if
every nonnil ideal of $(R) 1is invertible.

ProOF. Suppose that R is ¢-Dedekind. Let J be a nonnil ideal of &(R). Then
it is clear that J = ¢(I) for some nonnil ideal I of R. Hence J = ¢(I) is an
invertible ideal of ¢(R). Conversely, suppose that every nonnil ideal of ¢(R) is
invertible. Then it is clear that every nonnil ideal of R is ¢-invertible. Thus R
is ¢-Dedekind. J

We define a ring R to be a Dedekind ring if every regular ideal I of R is
invertible. Hence Proposition 2.1 can be restated as in the following corollary.

Corollary 2.2. Let Re H. Then R is a ¢-Dedekind ring if and only if ¢(R)
is a Dedekind ring.

We recall the following two lemmas from [1].
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Lemma 2.3. ([1, Lemma 2.3]) Let R € H with Nil(R) = Z(R), and let I be
an ideal of R. Then I is an invertible ideal of R if and only if T/Nil(R) is
an invertible ideal of R/Nil(R).

Lemma 2.4. ([1, Lemma 2.5]) Let R € H and let P be a prime ideal of R.
Then R/P is ring-isomorphic to ¢(R)/¢(P).

In particular, R/Nil(R) is ring-isomorphic to ¢(R)/Nil(¢(R)), and thus
dim ¢(R) = dim R.

Theorem 2.5. Let R € H. Then R is a ¢-Dedekind ring if and only if
R/Nil(R) is a Dedekind domain.

PROOF. Suppose that R is a ¢-Dedekind ring. Since ¢(R) € H, Nil(¢(R)) =
Z(¢(R)), and every nonnil ideal of ¢(R) is invertible, we conclude that every
nonzero ideal of ¢(R)/Nil(¢(R)) is invertible by Lemma 2.3. Since Nil(¢(R)) =
#(Nil(R)) and R/Nil(R) is ring-isomorphic to o(R)/Nil(¢(R)) by Lemma
2.4, we conclude that R/Nil(R) is a Dedekind domain.

Conversely, suppose that R/Nil(R) is a Dedekind domain. Hence, once again,
by Lemma 2.4 we conclude that ¢(R)/Nil(¢(R)) is a Dedekind domain. Since
#(R) € H and Nil(¢(R)) = Z(¢(R)), we conclude that every nonnil ideal of
#(R) is invertible by Lemma 2.3. Hence R isa ¢-Dedekind ring by Proposition
2.1. 0

Marco Fontana has asked the second-named author if this type of ring can be
characterized as a pullback of a Dedekind domain. In light of Theorem 2.5, we
see that the answer is “yes.” A similar pullback holds for ¢-Priifer rings.

Theorem 2.6. Let R € H. Then R is a ¢-Dedekind ring if and only if ¢(R)
is ring-isomorphic to a ring A obtained from the following pullback diagram:
A —— A/M
1 !
T — T/M
where T is a zero-dimensional quasilocal ring with mazimal ideal M, A/M
is a Dedekind subring of T/M, the vertical arrows are the usual inclusion maps,
and the horizontal arrows are the usual surjective maps.

PROOF. Suppose ¢(R) is ring-isomorphic to a ring A obtained from the given
diagram. Then A € H and Nil(A) = Z(A) = M. Since A/M is a Dedekind
domain, A is a ¢-Dedekind ring by Theorem 2.5, and thus R is a ¢-Dedekind
ring.
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Conversely, suppose that R is a ¢-Dedekind ring. Then, letting T = Ry (r),
M = Nil(Ryi(r)), and A = ¢(R) yields the desired pullback diagram. O

Our non-domain examples of ¢-Dedekind rings are provided by the idealization
construction R(+)B arising from a ring R and an R-module B as in [14,
Chapter VI]. We recall this construction. Let R(+)B = R x B, and define:

(1) (r,b)+ (s,¢) = (r+s5,b+ ).
(2) (r,b)(s,¢) = (rs,sb+rc).
Under these definitions, R{+)B becomes a commutative ring with identity.

Example 2.7. Let D be a Dedekind domain with quotient field K, and let
L be an extension ring of K. Set R = D(+)L. Then R€H and R isa
¢-Dedekind ring which is not a Dedekind domain.

PROOF. First, Nil(R) = {0}(+)L is a divided prime ideal of R. For let (0,y) €
Nil(R) and (a,z) € R\ Nil(R); then (0,y) = (a,2)(0,y/a). Thus R € H.
Since R/Nil(R) is ring-isomorphic to D, we conclude that R is a ¢-Dedekind
ring by Theorem 2.5. O

Remark 1. Let D be an integral domain and M a D-module. Then R =
D(+)M has Nil(R) = {0}(+)M, and Nil(R) is a prime ideal of R. It is easily
verified that Nil(R) is a divided prime ideal of R if and only if M is divisible
as a D-module. Moreover, Nil(R) is a divided prime ideal and Nil(R) = Z(R)
if and only if M is torsionfree and divisible as a D-module.

For aring R, let R’ denote the integral closure of R in T(R), and let ¢(R)
denote the complete integral closure of R in T(R). Recall that aring R € H is
called ¢-(completely) integrally closed if ¢(R) is (completely) integrally closed
in T(¢(R)) = Ryir)-

Lemma 2.8. Let R € H and set D = ¢(R)/Nil(¢(R)). Then one has that
D' = ¢(R)Y/Nil(¢(R)) and (D) = c(¢(R))/Nil(¢(R)). In particular, R s
o-(completely) integrally closed if and only if D is (completely) integrally closed,
if and only if R/Nil(R) is {completely) integrally closed.

ProOF. The proof relies on the following three facts: 1) Nil{¢(R)) is a divided
prime ideal of ¢(R), 2) T(D) = T(¢(R))/Nil(¢(R)) = Ryiury/Nil(¢(R)), and
3) D is ring-isomorphic to R/Nil(R). We leave the details of the proof to the
reader. 0

Recall from [6] that a ring R € H is called a nonnil-Noetherian ring if every
nonnil ideal of R is finitely generated. It was shown [6, Theorem 2.2] that a
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ring R € H is a nonnil-Noetherian ring if and only if R/Nil(R) is a Noetherian
domain. We recall that a ring R € H is called a discrete ¢-chained ring if R
is a ¢-chained ring with at most one nonnil prime ideal and every nonnil ideal of
R is principal.

We leave the proof of the following lemma to the reader.

Lemma 2.9. Let Re€ H. Then R is a discrete ¢-chained ring if and only if
R/Nil(R) is a discrete valuation domain.

The following characterization of ¢-Dedekind rings resembles that of Dedekind
domains as in [15, Theorem 96].

Theorem 2.10. Let R € H. Then the following statements are equivalent:
(1) R is ¢-Dedekind;
(2) R is nonnil-Noetherian, ¢-integrally closed, and of dimension < 1;
(3) R is nonnil-Noetherian and Ry is a discrete ¢-chained ring for each
mazimal ideal M of R.

Proor. Let D = R/Nil(R). Observe that each maximal ideal of D is of the
form M/Nil(R) for some maximal ideal M of R, Ry € H for each maximal
ideal M of R, 1’Vil(RMr) = Nil(R)g\,{, and DM/N?Ll(R) = RJ\/[/NZ.Z(R]\/[) for each
maximal ideal M of R.

(1) == (2). Since D is a Dedekind domain by Theorem 2.5, we conclude
that D is Noetherian, integrally closed, and of dimension <1 by [15, Theorem
96]. Hence R is nonnil-Noetherian by [6, Theorem 2.2], ¢-integrally closed by
Lemma 2.8, and it is clear that R has dimension < 1.

(2) = (3). Since R is nonnil-Noetherian, ¢-integrally closed, and of di-
mension < 1, we conclude that D is Noetherian by [6, Theorem 2.2}, integrally
closed by Lemma 2.8, and of dimension < 1. Thus D is Noetherian and
Daryviary = Ru/Nil(Ry) is a discrete valuation domain for each maximal
ideal M of R by [15, Theorem 96]. Thus R is nonnil-Noetherian and Ry is
a discrete ¢-chained ring for each maximal ideal M of R by Lemma 2.9.

(3) == (1). Since R is nonnil-Noetherian, we conclude that D is Noetherian
(again) by [6, Theorem 2.2]. Let M be a maximal ideal of R. Since Ry is
a discrete ¢-chained ring, Dyynary = Rar/Nil(Ry) is a discrete valuation
domain by Lemma 2.9. Thus D is a Dedekind domain by [15, Theorem 96}, and
hence R is ¢-Dedekind by Theorem 2.5. O

Recall that a ring R € ‘H is called a ¢-Priifer ring if every finitely generated
nonnil ideal of R is ¢-invertible. Also, recall from [14] that a ring R is called a
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Priifer ring if every finitely generated regular ideal of R is invertible. Hence we
have the following two results.

Proposition 2.11. Let R € H be a nonnil-Noetherian ring. Then R is a
¢-Dedekind ring if and only if R is a ¢-Priifer ring.

Theorem 2.12. Let R € H be a ¢-Dedekind ring. Then R is a Dedekind ring.

PROOF. Since R is a nonnil-Noetherian ring by Theorem 2.10, we conclude that
R is a ¢-Priifer ring by Proposition 2.11. Hence R is a Priifer ring by [1,
Theorem 2.14]. Since R is a nonnil-Noetherian Priifer ring, we conclude that R
is a Dedekind ring (i.e., every regular ideal of R is invertible). O

The following is an example of a ring R € H which is a Dedekind ring but
not a ¢-Dedekind ring.

Example 2.13. Let D be a non-Dedekind domain with (proper) quotient field
K. Set R=D(+)K/D. Then R€H and R =T(R). Hence R is a Dedekind
ring. Since R/Nil(R) is ring-isomorphic to D, R is not a ¢-Dedekind ring by
Theorem 2.5.

In light of Corollary 2.2 and Theorem 2.12, we have the following result; we
omit its proof.

Theorem 2.14. Let R € 'H such that Nil(R) = Z(R). Then R is a Dedekind
ring if and only if R is a ¢-Dedekind ring.

It is well-known that an integral domain R is a Dedekind domain iff every
nonzero proper ideal of R is (uniquely) a product of prime ideals of R. We have
the following result.

Theorem 2.15. Let R e H. Then R is a ¢-Dedekind ring if and only if every
nonnil proper ideal of R is (uniquely) a product of nonnil prime ideals of R.

PROOF. Suppose that R is ¢-Dedekind. Then D = R/Nil(R) is a Dedekind
domain by Theorem 2.5. Let I be a nonnil proper ideal of R. Since D is
a Dedekind domain, I/Nil(R) = (P,/Nil(R))(P:/Nil(R))---(P,/Nil(R)) for
some nonnil prime ideals Pi,..., P, of R. Let Q = P,P---P,. We claim
that I = Q. This follows since Nil(R) C Q@ because Nil(R) C P, for each i
and Nil(R) is a divided prime ideal of R. For the uniqueness, just observe that
Py/Nil(R) = P3/Nil(R) in D for prime ideals P, and P, of R if and only
if Py=Ps.
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Conversely, if each nonnil proper ideal of R is a product of nonnil prime ideals
of R, then each proper nonzero ideal of D is a product of prime ideals of D.
Thus D is a Dedekind domain, and hence R is a ¢-Dedekind ring by Theorem
2.5. 0

Recently, Brewer and Heinzer [10, Theorem 9] gave the following characteriza~
tion of Dedekind domains.

Theorem ([10, Theorem 9]). Let R be an integral domain. Then the following
statements are equivalent:
(1) R is a Dedekind domain;
(2) Each nonzero proper principal ideal aR can be written in the form aR =
01Qs - Qy,, where each Q; 1is a power of a prime ideal of R and the
Q:’s are pairwise comazimal;
(3) Each nonzero proper ideal I of R can be written in the form I =
Q1Qs - Qy, where each Q; is a power of a prime ideal of R and the
Q;’s are patrwise comazimal.

For a ring R € H, we have the following analog of the above theorem; we omit
its proof.

Theorem 2.16. Let R € H. Then the following statements are equivalent:

(1) R is a ¢-Dedekind ring;

(2) Each nonnil proper principal ideal aR can be written in the form aR =
Q1Qs - Q. where each Q; is a power of a nonnil prime ideal of R
and the Q;’s are pairwise comazimal;

(3) Each nonnil proper ideal I of R can be written in the form I =
Q1Qs - Qy, where each Q; is a power of a nonnil prime ideal of R
and the Q;’s are pairwise comazimal.

Recall from [13] that a ring R is called a ZPI-ring if every nonzero proper
ideal of R is uniquely a product of prime ideals of R, and R is called a general
ZPI-ring if every nonzero proper ideal of R is a product of prime ideals of R.
We say that a ring R € H is a nonnil-ZPI-ring if every nonnil proper ideal of
R is uniquely a product of (nonnil) prime ideals of R, and we say that R isa
general nonnil-ZPI-ring if every nonnil proper ideal of R is a product of (nonnil)
prime ideals of R. In view of Theorem 2.15, we have the following result.

Corollary 2.17. Let R € H. Then the following statements are equivalent:
(1) R is a ¢-Dedekind ring;
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(2) R is a nonnil-ZPI-ring;
(3) R is a general nonnil-ZPI-ring.

Theorem 2.18. Let R€H be a ¢-Dedekind ring and let I be an ideal of R.
Then:

(1) If I C Nil(R), then R/I is a ¢-Dedekind ring.

(2) If I is a nonnil ideal of R, then R/I is a general ZPI-ring.

PROOF. (1). Suppose that I C Nil(R), and set A = R/I. Then Nil(A) =
Nil(R)/I is a divided prime ideal of A. Hence A € M. Since A/Nil(A) is
ring-isomorphic to D = R/Nil(R) and D is a Dedekind domain, we conclude
that A = R/I is a ¢-Dedekind ring.

(2). Suppose that I is a nonnil ideal of R. Since J = I/Nil(R) is a nonzero
proper ideal of the Dedekind domain D = R/Nil(R), we conclude that D/.J is
a general ZPI-ring by [13, Chapter 39, page 469]. Since D/J is ring-isomorphic
to R/I, we conclude that R/I is a general ZPI-ring. 0

The following characterization of ¢-Dedekind domains resembles that of general
ZPI-rings as in [13, Theorem 39.2, page 470].

Theorem 2.19. Let R € H. Then the following statements are equivalent:
(1) R is a ¢-Dedekind ring;
(2) R is a nonnil-Noetherian ring and there are no ideals properly between
M and M? for each nonnil mazimal ideal M of R.

Proor. Set D = R/Nil(R).

(1) = (2). Since D is a Dedekind domain (general ZPI-ring) by Theorem
2.5, we conclude that D is a Noetherian domain and there are no ideals properly
between J and J? for each maximal ideal J of D by [13, Theorem 39.2, page
470]. Hence R is a nonnil-Noetherian ring by [6, Theorem 2.2], and it is clear
that there are no ideals properly between M and M? for each nonnil maximal
ideal M of R.

(2) = (1). Since D is Noetherian by [6, Theorem 2.2] and there are no
ideals properly between J and J? for each maximal ideal J of D, D is a
Dedekind domain by [13, Theorem 39.2, page 470]. Hence R is a ¢-Dedekind
ring by Theorem 2.5. I

It is well-known [15, Problems 11 and 12, page 73] that an integral domain R
is a Dedekind domain iff every nonzero prime ideal of R is invertible, iff R is
Noetherian and every nonzero maximal ideal of R is invertible. Hence, in light of
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Theorem 2.5 and [15, Problems 11 and 12, page 73], we have the following result
which will not be proved here.

Theorem 2.20. Let R € H. Then the following statements are equivalent:
(1) R is a ¢-Dedekind ring;
(2) Each nonnil prime ideal of R is ¢-invertible;
(3) R is a nonnil-Noetherian ring and each nonnil mazimal ideal of R is
d-invertible.

1t is well-known [13, Problem 4, page 475] that a principal ideal ring is a general
ZPI-ring. We call aring R € H a nonnil-principal ideal ring if every nonnil ideal
of R is principal. It is easy to prove the following result.

Theorem 2.21. Let R € H. Then R is a nonnil-principal ideal ring if and
only if R/Nil(R) is a principal ideal domain.

Theorem 2.22. Let R € H be a nonnil-principal ideal ring. Then R is a
¢-Dedekind ring.

PROOF. Set D = R/Nil(R). Then D is a principal ideal domain by Theorem
2.21. Hence D is a Dedekind domain, and thus R is a ¢-Dedekind ring by
Theorem 2.5. 0

Recall that aring B is called an overring of aring R if RC B CT(R). Itis
well-known [13, Theorem 40.1, page 477| that an overring of a Dedekind domain
is & Dedekind domain. We end this section with the following result.

Theorem 2.23. Let R € H be a ¢-Dedekind ring. Then every overring of R
s a ¢-Dedekind ring.

PROOF. Let S be an overring of R. Then S € H, Nil(S) = Nil(R), and
S/Nil(R) is an overring of R/Nil(R). Since D is a Dedekind domain and
S/Nil(R) is an overring of R/Nil(R), we conclude that S/Nil(R) is a Dedekind
domain by [13, Theorem 40.1, page 477]. Hence S is a ¢-Dedekind ring by
Theorem 2.5. 0

3. ON ¢-Krury RINGS

Recall that a ring R € H is said to be a ¢-Krull ring if ¢(R) = NV;, where
each V; is a discrete ¢-chained overring of ¢(R), and for every nonnilpotent
element € R, ¢(x) is a unit in all but finitely many V;. We begin this section
with the Krull domain analog of Theorem 2.5, Theorem 2.6, Lemma 2.9, and
Theorem 2.21.
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Theorem 3.1. Let R € H. Then R is a ¢-Krull ring if and only if R/Nil(R)
is a Krull domain.

PROOF. Suppose that R is a ¢-Krull ring. Then ¢(R) = NV;, where each
V; is a discrete ¢-chained overring of ¢(R), and for every nonnilpotent element
z € R, ¢(z) is a unit in all but finitely many V;. Since each V; is a discrete
¢-chained overring of ¢(R) and T(¢(R)/Nil(¢(R)) = T(¢(R))/Nil{¢p(R)) =
Ry /Nil(¢(R)), we conclude that each V;/Nil(¢(R)) is a discrete valua-
tion overring of @(R)/Nil(¢(R)) by Lemma 2.9. Hence ¢(R)/Nil(¢(R)) =
NV;/Nil(¢(R)) and every nonzero element of ¢(R)/Nil(¢(R)) is a unit in all
but finitely many V;/Nil(¢(R)). Thus ¢(R)/Nil(¢(R)) is a Krull domain. Since
¢(R)/Nil(4(R)) is ring-isomorphic to R/Nil(R) by Lemma 2.4, R/Nil(R) is a
Krull domain.

Conversely, suppose that R/Nil(R) is a Krull domain. Since R/Nil(R)
is ring-isomorphic to @(R)/Nil{¢(R)) by Lemma 2.4, we can conclude that
¢(R)/Nil(¢(R)) is a Krull domain. Since a ring A € H is a discrete ¢-
chained ring if and only if A/Ntul(A) is a discrete valuation ring by Lemma
2.4 and T(4(R)/Nil(¢(R)) = T($(R))/Nil(9(R)) = Ryat(ry/Nill o(R)), we con-
clude that ¢(R)/Nil(¢(R)) = NV;/Nil(¢(R)), where each V; 1is a discrete
¢~chained overring of ¢(R). Hence ¢(R) = NV;. Since for every nonnilpotent
element z € R, ¢(x)+ Nil(¢(R)) is a unit in all but finitely many V,/Nil(¢(R)),
we conclude that ¢(x) is a unit in all but finitely many V;. Hence R is a
¢-Krull ring. 0

We have the following pullback characterization of ¢-Krull rings.

Theorem 3.2. Let R € H. Then R is a ¢-Krull ring if and only if ¢(R) is
ring-isomorphic to a ring A obtained from the following pullback diagram:
A— A/M
1 !
T— T/M
where T is a zero-dimensional quasilocal ring with mazimal ideal M, A/M
is o Krull subring of T/M, the vertical arrows are the usual inclusion maps, and
the horizontal arrows are the usual surjective maps.

Proor. Suppose ¢(R) is ring-isomorphic to a ring A obtained from the given
diagram. Then A € H and Nil(A) = Z(A) = M. Since A/M is a Krull
domain, A is a ¢-Krull ring by Theorem 3.1, and thus R is a ¢-Krull ring.
Conversely, suppose that R is a ¢-Krull ring. Then, letting T = Ryg),
M = Nil(Rnqacr)), and A = ¢(R) yields the desired pullback diagram. 0
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Example 3.3. Let D be a Krull domain with quotient field K, and let L be
a ring extension of K. Set R = D(+)L. Then Re€ H and R is a ¢-Krull
ring which is not ¢ Krull domain.

Proor. As in Example 2.7, Nil{(R) = {0}(+)L is a divided prime ideal of R.
Thus R € H. Since R/Nil(R) is ring-isomorphic to D, we conclude that R
is a ¢-Krull ring by Theorem 3.1. O

It is well-known [12, Theorem 3.6] that an integral domain R is a Krull
domain if and only if R is a completely integrally closed Mori domain. We have
a similar characterization for ¢-Krull rings.

Theorem 3.4. Let R H. Then R is a ¢-Krull ring if and only if R is a
¢-completely integrally closed ¢-Mori ring.

ProOOF. Set D = R/Nil(R). Suppose that R is a ¢-Krull ring. Then D isa
Krull domain by Theorem 3.1. Hence D is a completely integrally closed Mori
domain. Thus R is a ¢-completely integrally closed ¢-Mori ring by Lemma 2.8
and [8], respectively.

Conversely, suppose that R is a ¢-completely integrally closed ¢-Mori ring.
Then D is a completely integrally closed Mori domain by Lemma 2.9 and [8].
Hence D is a Krull domain, and thus R is a ¢-Krull ring by Theorem 3.1. [J

Tt is known [13, Theorem 43.16, page 536] that a Krull domain R which is not
a field is a Prifer domain iff R is a Dedekind domain, iff R is one-dimensional.
We have the following analogous result for ¢-Krull rings.

Theorem 3.5. Let R € H be a ¢-Krull ring which is not zero-dimensional.
Then the following statements are equivalent:

(1) R s a ¢-Priifer ring;

(2) R is a ¢-Dedekind ring;

(3) R is one-dimensional.

PROOF. Set D = R/Nil(R). Then D is a Krull domain by Theorem 3.1, and
it is clear that D 1is not a field.

(1) == (2). Since D is a Priifer domain by [1, Theorem 2.6], D is a Dedekind
domain by [13, Theorem 43.16, page 536], and hence R is a ¢-Dedekind ring by
Theorem 2.5.

(2) == (8). Since D is a Dedekind domain by Theorem 2.5, we conclude
that D is one-dimensional by {13, Theorem 43.16, page 536], and thus R is
one-dimensional.
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(3) == (1). Since D is one-dimensional, D is a Priifer domain again by
[13, Theorem 43.16, page 536], and hence R is a ¢-Priifer ring by [1, Theorem
2.6]. O

1t is well-known that if R is a Noetherian domain, then R’ is a Krull domain.
In particular, an integrally closed Noetherian domain is a Krull domain. We have
the following analogous result for nonnil-Noetherian rings.

Theorem 3.6. Let R € H be a nonnil-Noetherian ring. Then ¢(R) is a
¢-Krull ring. In particular, if R is a ¢-integrally closed nonnil-Noetherian ring,
then R is a ¢-Krull ring.

PROOF. Set D = ¢{R)/Nil(¢{R)). Since R/Nil(R) is a Noetherian domain
by [6, Theorem 2.2] and R/Nil(R) is ring-isomorphic to D by Lemma 2.4,
we conclude that D is a Noetherian domain. Since D’ = ¢(R)'/Nil(¢(R)) by
Lemma 2.8 and D’ is a Krull domain, we conclude that ¢(R)" is a ¢-Krull ring
by Theorem 3.1. The “in particular” statement is now clear. O

It is known [15, Problem &, page 83] that if R is a Krull domain in which
all prime ideals of height > 2 are finitely generated, then R is a Noetherian
domain. We have the following analogous result for nonnil-Noetherian rings.

Theorem 3.7. Let R € H be a ¢-Krull ring in which all prime ideals of R
with height > 2 are finitely generated. Then R is ¢ nonnil-Noetherian ring.

Proor. Since R/Nil(R) is a Krull domain in which all prime ideals of height
> 2 are finitely generated, we conclude that R/Nil(R) is a Noetherian domain
by [15, Problem 8, page 83]. Hence R is a nonnil-Noetherian ring by [6, Theorem
2.2). O

For a ring R € H, let ¢r denotes the ring-homomorphism ¢ : T(R) —
Ryiir)- We have the following lemma.

Lemma 3.8. Let R € H andlet P be a nonnil prime ideal of R. Then
brp(Rp) = ¢r(R)pap) is an overring of ¢r(R).

PROOF. Since (Rp)ni(rps) = Bnicr) = T(ér(R)), we conclude that ¢r,(Rp) C
Ryicr) = T(¢r(R)). Let y € R. Then y/1 € Rp, and hence ér,.(y/1) = dr(y).
Also, suppose that y € R\ P. Then &ér.(y/y) = ¢r.(1/y)br-(y/1) =
b1y (1/y)on(y) = 1, and thus ér, (1/y) = 1/ér(y). Hence let o =a/b € Rp
for some a € R and b € R\ P. Then ¢g.(a/b) = ¢r(a)/¢r(b), and thus
brp(Rp) € ¢r(R)sn(p). Conversely, suppose that = € ¢r(R)pnp). Then
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z = ¢rla)/¢r(b) forsome a € R and b e R\ P. Hence z = ¢g(a)/dr(b) =
¢rp(a/b) € ¢r,.(Rp), and thus ¢r(R)s,p) C dr,(Rp). O

It is well-known [12, Proposition 1.9, page 8] that an integral domain R is a
Krull domain if and only if R satisfies the following three conditions:

(1) Rp is a discrete valuation domain for every height-one prime ideal P of

R;
(2) R = NRp, the intersection being taken over all height-one prime ideals
P of R;

(3) Each nonzero element of R is in only a finite number of height-one prime
ideals of R, i.e., each nonzero element of R is a unit in all but finitely
many Rp, where P is a height-one prime ideal of R.

We have the following result which is an analog of {12, Proposition 1.9, page
8].

Theorem 3.9. Let R€H with dim R>1. Then R is a ¢-Krull ring if and
only if R satisfies the following three conditions:

(1) Rp is a discrete ¢p-chained ring for every height-one prime ideal P of
R;

(2) ¢r(R) = N¢r,(Rp), the intersection being taken over all height-one
prime ideals P of R;

(3) Each nonnilpotent element of R lies in only a finite number of height-
one prime ideals of R, i.e., each nonnilpotent element of R is a unit in
all but finitely many Rp, where P s a height-one prime ideal of R.

Proor. First observe that Nil(¢r,(Rp)) = Nil(¢r(R)). Suppose that R isa
¢-Krull ring. Set D = R/Nil(R), and let P be a height-one prime ideal of R.
Since D is a Krull domain by Theorem 3.1, Dp /iRy 18 a discrete valuation do-
main. Since Dp/ni(r) is ring-isomorphic to Rp/Nil(Rp), we conclude that Rp
is a discrete ¢-chained ring by Lemma 2.9. Since Rp/Nil(Rp) is ring-isomorphic
to ¢r,(Rp)/Nil(¢r,(Rp)), we conclude that ¢r,.(Rp) is a discrete ¢-chained
ring by Lemma 2.9. Hence ¢gr(R)y,(p) is a discrete ¢-chained ring by Lemma
3.8. Now, set F' = ¢r(R)/Nil(¢r(R)). Since D is a Krull domain by Theorem
3.1 and D is ring-isomorphic to F by Lemma 2.4, we conclude that F is a
Krull domain. Hence F = ¢r(R)/Nil(¢r(R)) = NGr(R)y,p/Nil(¢pr(R)) =
N¢r,(Rp)/Nil(¢r(R)), the intersection being taken over all height-one prime
ideals P of R. Thus it is easily verified that ¢r(R) = N¢gr,(Rp), the inter-
section being taken over all height-one prime ideals P of R. Since for each
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nonnilpotent element = of R, ¢r(z)+ Nil(¢pr(R)) lies in only a finite number
of height-one prime ideals of F, we conclude that each nonnilpotent element of
R lies in only a finite number of height-one prime ideals of R.

The converse is clear by the definition of ¢-Krull rings. O

Recall that a ring R is called a Marot ring if each regular ideal of R is
generated by its set of regular elements. A Marot ring is called a Krull ring in
the sense of [14, page 37] if either R = T(R) or if there exists a family {Vi} of
discrete rank one valuation rings such that:

(1) R is the intersection of the valuation rings {V;}.
(2) Each regular element of T(R) is a unit in all but finitely many V.

The following is an example of a discrete ¢-chained ring which is not a discrete
rank one valuation ring in the sense of [14].

Example 3.10. Let D be a discrete valuation domain with mazimal ideal M
and quotient field K. Set R = D(+)K/D. Then R€ M and R=T(R). Hence
R s not a discrete rank one valuation by [14, Lemma 8.1(1), page 37]. Since
R/Nil(R) is ring-isomorphic to D, R s a discrete ¢-chained ring by Lemma
2.9.

Observe that the ring R in the above example is a Krull ring since R =T (R).
We have the following result which is the ¢-Krull analog of Theorem 2.14.

Theorem 3.11. Let R € H such that Nil(R) = Z(R). Then R is a Krull
ring if and only if R is a ¢-Krull ring.

PROOF. Since Z(R) is a prime ideal of R, R is a Marot ring by [14, Theorem
7.2, page 32]. It is easily verified that for each nonnil prime ideal P of R, Rp
is a discrete rank one valuation ring if and only if Rp is a discrete ¢-chained
ring. Hence the claim is now clear by Theorem 3.9. ]

The following is an example of a ring R € H which is a Krull ring but not a
¢-Krull ring.

Example 3.12. Let D be a non-Krull domain with (proper) quotient field K.
Set R = D(+)K/D. Then ReH and R=T(R). Hence R is a Krull ring.
Since R/Nil(R) is ring-isomorphic to D, R is not a ¢-Krull ring by Theorem
3.1.
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